Conformal Mapping of Long Quadrilaterals and Thick Doubly Connected Domains

نویسنده

  • R. Laugesen
چکیده

Abstract. In this paper we investigate theoretically an approximation technique for avoiding the crowding phenomenon in numerical conformal mapping. The method applies to conformal maps from rectangles to "long quadrilaterals," i.e., Jordan domains bounded by two parallel straight lines and two Jordan arcs, where the two arcs are far apart. We require that these maps take the four corners of the rectangle to the four corners of the quadrilateral. Our main theorem tackles a conformal mapping problem for doubly connected domains, and we derive from this our results for quadrilaterals. As a corollary, we extend the "domain decomposition" mapping technique of Papamichael and Stylianopoulos. Similar results hold for the inverse maps, from quadrilaterals to rectangles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjugate function method for numerical conformal mappings

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Harri Hakula, Tri Quach, Antti Rasila Name of the publication Conjugate function method for numerical conformal mappings Publisher School of Science Unit Department of Mathematics and Systems Analysis Series Aalto University publication series SCIENCE + TECHNOLOGY 21/2011 Field of research Abstract We present a method for nume...

متن کامل

Breakthrough in Conformal Mapping

Few analytical techniques are better known to students of applied mathematics than conformal mapping. It is the classical method for solving problems in continuum mechanics, electrostatics, and other fields involving the two-dimensional Laplace and Poisson equations. To employ the method, one needs an explicit mapping function from some standard domain— such as the unit disk or upper half plane...

متن کامل

Computation of Multiply Connected Schwarz-Christoffel Maps for Exterior Domains

We have recently derived a Schwarz-Christoffel formula for the conformal mapping of the exterior of a finite number of disks to the exterior of a set of polygonal curves [5]. In this work we show how to formulate a set of equations for determining the parameters of such a map. A number of examples are computed, including exteriors of multiple slits. We also recall the derivation of the mapping ...

متن کامل

Numerical Conformal Mapping of Doubly Connected Regions via the Kerzman-stein Kernel

Abstract: An integral equation method based on the Kerzman-Stein kernel for conformal mapping of smooth doubly connected regions onto an annulus A = {w : μ < |w| < 1} is presented. The theoretical development is based on the boundary integral equation for conformal mapping of doubly connected regions with Kerzman-Stein kernel derived by Razali and one of the authors [8]. However, the integral e...

متن کامل

A Software Package for Computing Schwarz-Christoffel Conformal Transformation for Doubly Connected Polygonal Regions

A software package implementing Schwarz-Christoffel Conformal transformation (or mapping) of doubly connected polygonal regions is fully described in this paper from mathematical, numerical, and practical perspectives. The package solves the so-called accessory parameter problem associated with the mapping function as well as evaluates forward and inverse maps. The robustness of the package is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005